MOSFET－Power，Single N－Channel
 40 V， $0.45 \mathrm{~m} \Omega, 558$ A

NTMTS0D4N04C

Features

－Small Footprint（ 8 x 8 mm ）for Compact Design
－Low $\mathrm{R}_{\mathrm{DS}(\text { on })}$ to Minimize Conduction Losses
－Low Q_{G} and Capacitance to Minimize Driver Losses
－Power 88 Package，Industry Standard
－These Devices are $\mathrm{Pb}-$ Free，Halogen Free／BFR Free and are RoHS Compliant

MAXIMUM RATINGS $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted）

Parameter			Symbol	Value	Unit
Drain－to－Source Voltage			$\mathrm{V}_{\text {DSS }}$	40	V
Gate－to－Source Voltage			V_{GS}	± 20	V
Continuous Drain Current $\mathrm{R}_{\text {日JC }}$ （Notes 1，3）	Steady State	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	I_{D}	558	A
		$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		394.8	
Power Dissipation $\mathrm{R}_{\text {日JC }}$（Note 1）		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	244.0	W
		$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		122.0	
Continuous Drain Current $\mathrm{R}_{\theta \mathrm{JA}}$ （Notes 1，2，3）	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$I_{\text {D }}$	79.8	A
		$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		56.4	
Power Dissipation $\mathrm{R}_{\text {өJA }}$（Notes 1，2）		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	5.0	W
		$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		2.5	
Pulsed Drain Current	$\mathrm{T}_{\mathrm{A}}=25$	， $\mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$	I_{DM}	900	A
Operating Junction and Storage Temperature			$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\mathrm{stg}}$	$\begin{gathered} -55 \text { to } \\ +175 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Source Current（Body Diode）			Is	203.4	A
Single Pulse Drain－to－Source Avalanche Energy（ $\mathrm{l}_{\mathrm{L}(\mathrm{pk})}=70 \mathrm{~A}$ ）			$\mathrm{E}_{\text {AS }}$	4454	mJ
Lead Temperature for Soldering Purposes （ $1 / 8^{\prime \prime}$ from case for 10 s ）			T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device．If any of these limits are exceeded，device functionality should not be assumed，damage may occur and reliability may be affected．

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction－to－Case－Steady State	$\mathrm{R}_{\text {日JC }}$	0.61	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction－to－Ambient－Steady State（Note 2）	$\mathrm{R}_{\theta \mathrm{JA}}$	30	

1．The entire application environment impacts the thermal resistance values shown， they are not constants and are only valid for the particular conditions noted．
2．Surface－mounted on FR4 board using a $650 \mathrm{~mm}^{2}$ ， 2 oz ．Cu pad．
3．Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle．

ON Semiconductor ${ }^{\text {® }}$
www．onsemi．com

$\mathbf{V}_{\text {（BR）DSs }}$	$\mathbf{R}_{\mathrm{DS}(\mathrm{ON})}$ MAX	\mathbf{I}_{D} MAX
40 V	$0.45 \mathrm{~m} \Omega @ 10 \mathrm{~V}$	558 A

G（1）

N－CHANNEL MOSFET

MARKING DIAGRAM

XXX＝Device Code
（8 A－N characters max）
A＝Assembly Location
WL＝2－digit Wafer Lot Code
Y＝Year Code
WW＝Work Week Code

ORDERING INFORMATION

See detailed ordering，marking and shipping information in the package dimensions section on page 5 of this data sheet．

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

ON CHARACTERISTICS (Note 4)

Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}$	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2.0		4.0	V
Threshold Temperature Coefficient	$\mathrm{V}_{\mathrm{GS}(\mathrm{TH})} / \mathrm{T}_{\mathrm{J}}$			-8.49		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Drain-to-Source On Resistance	$\mathrm{R}_{\mathrm{DS}(\text { on })}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}$		0.38	0.45
Forward Transconductance	g_{FS}	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}$		300	$\mathrm{~m} \Omega$	

CHARGES, CAPACITANCES \& GATE RESISTANCE

Input Capacitance	$\mathrm{C}_{\text {ISS }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=0.1 \mathrm{MHz}, \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}$	16500	pF
Output Capacitance	Coss		8310	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {RSS }}$		390	
Total Gate Charge	$\mathrm{Q}_{\mathrm{G}(\text { (TOT) }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}$	251	nC
Threshold Gate Charge	$\mathrm{Q}_{\mathrm{G}(\mathrm{TH})}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}$	40.0	
Gate-to-Source Charge	$Q_{G S}$		62.6	
Gate-to-Drain Charge	$Q_{G D}$		49.0	
Plateau Voltage	V_{GP}		4.08	V
Gate Resistance	R_{G}		0.9	Ω

SWITCHING CHARACTERISTICS (Note 5)

Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=6 \Omega \end{gathered}$	55.2	ns
Rise Time	t_{r}		50.8	
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$		200	
Fall Time	t_{f}		78.7	

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	$\mathrm{V}_{\text {SD }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=50 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	0.75	1.2	V
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	0.58		
Reverse Recovery Time	t_{RR}	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{dIS} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{us}, \\ \mathrm{I}_{\mathrm{S}}=50 \mathrm{~A} \end{gathered}$		120		ns
Charge Time	t_{a}			60		
Discharge Time	t_{b}			60		
Reverse Recovery Charge	$\mathrm{Q}_{\text {RR }}$			338		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Pulse Test: pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
5. Switching characteristics are independent of operating junction temperatures.

NTMTS0D4N04C

TYPICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 5. On-Resistance Variation with Temperature

Figure 2. Transfer Characteristics

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 6. Drain-to-Source Leakage Current vs. Voltage

NTMTS0D4N04C

TYPICAL CHARACTERISTICS

Figure 7. Capacitance Variation

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 8. Gate-to-Source Voltage vs. Total Charge

Figure 10. Diode Forward Voltage vs. Current

Figure 12. IPEAK vs. Time in Avalanche

NTMTS0D4N04C

TYPICAL CHARACTERISTICS

Figure 13. Thermal Characteristics

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping †
NTMTSOD4NO4CTXG	OD4N04C	POWER 88 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NTMTS0D4N04C

PACKAGE DIMENSIONS

DFNW8 8.3x8.4, 2P
CASE 507AP
ISSUE B

$\frac{\text { DETAIL A }}{\text { SCALE } 2 \mathrm{X}}$

SCALE: 2X
NOTES

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
2. CONTROLLING DIMENSION: MILLIMETERS
3. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS
4. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS
5. SEATING PLANE IS DEFINED BY THE TERMINALS
"A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY

DIM	MILLIMETERS		
	MIN.	NOM.	MAX.
A	1.00	1.10	1.20
A1	0.00	---	0.05
b	0.90	1.00	1.10
b1	0.43	0.53	0.63
c	0.23	0.28	0.33
D	8.20	8.30	8.40
D1	7.90	8.00	8.10
D2	6.80	6.90	7.00
D3	6.90	7.00	7.10
E	8.30	8.40	8.50
E1	7.80	7.90	8.00
E2	5.24	5.34	5.44
E3	0.25	0.35	0.45
e	2.00 BSC		
e/2	1.00 BSC		
e1	2.70 BSC		
e1/2	1.35 BSC		
K	1.50	1.57	1.70
L	0.64	0.74	

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

